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| EXERCICE 1 (10 points)

Résumé de I’énoncé

On étudie le refroidissement d'une plaque d’aluminium. La température f(t) (en °C) au bout de t minutes suit
une équation différentielle, puis on exploite I’expression explicite de f(t) pour répondre a des questions de
modélisation et d’interprétation.

Partie A - Equation différentielle
1. Résolution de I’équation différentielle homogeéne

On considere 1'équation : y' + 0,25y = 0

C’est une équation différentielle linéaire du premier ordre a coefficients constants. On rappelle la formule
fournie :

Equation : y' +ay =0 - Solution : y(t) = k e™{-a t}, k |in |mathbb{R}

Ici, a = 0,25. Dong, les solutions sont :

y(t) = k e”{-0,25 t}, k \in \mathbb{R}

Point de méthode : On résout une équation différentielle linéaire homogeéne du premier ordre en
reconnaissant la forme standard et en utilisant la solution exponentielle.
Erreur fréquente : Oublier le signe négatif dans I’exposant ou la constante d’intégration.

2. Recherche d’une solution constante de I’équation compleéte

On cherche g(t) = c solution de y' + 0,25y = 7,5.
e g®=0
e L’équation devient 0 + 0,25¢c = 7,5 donc ¢ = 7,5/ 0,25 = 30

c =30

Point de méthode : Pour trouver une solution particuliere constante, on pose la dérivée nulle et on



résout I’équation algébrique.
Erreur fréquente : Ne pas remplacer y' par 0 pour une fonction constante.

3. Ensemble des solutions de I’équation complete

L’équation y' + 0,25y = 7,5 est linéaire du premier ordre. L’ensemble des solutions est :
e Solution générale de 'homogene : k e™~{-0,25 t}
e Solution particuliere : 30

Donc, toute solution s’écrit :

y(t) =k e”{-0,25 t} + 30, k \in \mathbb{R}

Point de méthode : Pour une équation différentielle linéaire non homogéne, la solution générale est la
somme d'une solution de I’homogéne et d’une particuliere.
Erreur fréquente : Oublier la constante d’intégration ou la solution particuliére.

4. Détermination de la solution particuliere avec la condition initiale

On sait que f(0) = 250. On utilise la forme générale : f(t) = k e”{-0,25 t} + 30
e At=0:f(0) =k + 30 =250 donc k = 220

Donc :

f(t) = 220 e~{-0,25 t} + 30

Point de méthode : On utilise la condition initiale pour déterminer la constante d’intégration.
Erreur fréquente : Mauvais report de la condition initiale, ou erreur de calcul lors de la résolution pour
k.

Partie B - Etude de la fonction
1. Température apres un quart d’heure (15 minutes)

On cherche f(15) = 220 e™{-0,25 \times 15} + 30
e 0,25 \times 15 = 3,75
e e7™{-3,75} = 0,0235 (a la calculatrice)
e 220 \times 0,0235 = 5,17
e f(15) = 5,17 + 30 = 35,17 (arrondi a 0,1°C : 35,2°C)

Aprés 15 minutes, la température est d’environ 35,2°C.

Point de méthode : Remplacer t par 15 dans I’expression de f, calculer I’exponentielle puis additionner.
Erreur fréquente : Oublier d’ajouter 30, erreur de calcul d’exponentielle ou mauvaise utilisation de la
calculatrice.

2. Limite de f en +» et interprétation



f(t) = 220 e~{-0,25 t} + 30
e Quand t \to +«, e~{-0,25 t} \to 0
e Donc f(t) \to 30
Conséquence pour la courbe : y = 30 est une asymptote horizontale.

Interprétation : La température de la plaque se stabilise a 30°C (température ambiante).

\lim_{t \to +\infty} f(t) = 30

Point de méthode : La limite d’'une exponentielle décroissante est 0, donc la fonction tend vers la
constante ajoutée.
Erreur fréquente : Confondre la limite avec la valeur initiale ou oublier 1’asymptote.

3. Dérivée et variations de f

On dérive : f(t) = 220 e”~{-0,25 t} + 30
o f'(t) = 220 \times (-0,25) e~{-0,25 t} = -55 e™{-0,25 t}
e Pour tout t \geq 0, e~{-0,25 t} > 0, donc f'(t) < 0
e La fonction f est strictement décroissante sur [0 ; +\infty[

Interprétation : La température de la plaque diminue constamment au cours du temps.

f'(t) =-55e7{-0,25 t}

La fonction f est strictement décroissante sur [0 ; +\infty[.

Point de méthode : Dérivée d’'une exponentielle composée, puis étude du signe.
Erreur fréquente : Oublier le signe négatif ou mal appliquer la regle de dérivation.

4. Vérification de I'affirmation du technicien et durée pour passer sous 150°C

Le technicien affirme : « en cent secondes, la plaque a perdu cent degrés ».
Attention : 100 secondes = 1 min 40 s = 1,666... min.

e Calculons f(0) : 220 \times 1 + 30 = 250
e Calculons f(1,666...) :
o 0,25 \times 1,666... = 0,4167
o €7{-0,4167} = 0,659
o 220 \times 0,659 = 145
o f(1,666...) = 145 + 30 = 175
e Perte de température : 250 - 175 = 75 degrés
L’affirmation est donc fausse.
Pour trouver le temps ou f(t) < 150 :
f(t) = 220 e7{-0,25 t} + 30 < 150
220 e™{-0,25t} < 120
e~{-0,25 t} < 120 / 220 = 0,5455
On prend le logarithme :
-0,25 t < \In(0,5455) = -0,606



t>-0,606/ 0,25 =-2,424

e Mais comme l’exponentielle est strictement décroissante, on cherche le plus petit t tel que f(t) \leq
150.

e Calculons précisément :

e ¢7{-0,25t} = 120 / 220 = 0,5455

e -0,25t =\In(0,5455) = -0,606

e £=0,606/0,25 = 2,424 minutes

e En secondes : 2,424 \times 60 =~ 145,4 secondes

e Arrondi a la seconde : 145 secondes

Le technicien a tort : en 100 secondes, la plaque perd environ 75°C.
La température passe sous 150°C au bout de 145 secondes (arrondi a la seconde).

Point de méthode : Bien convertir les unités (minutes/secondes), isoler I’exponentielle, puis appliquer
le logarithme népérien.

Erreur fréquente : Oublier la conversion des unités, ou se tromper dans la manipulation des inégalités
avec le logarithme.

5. Croquis de la courbe représentative

La courbe de f(t) = 220 e™{-0,25 t} + 30 est une décroissance exponentielle partant de 250, tendant vers 30,
avec une pente négative, et les points remarquables :

e f(0) = 250 (point de départ)

e f(15) = 35,2 (apres 15 min)

e Asymptote horizontale y = 30

e Point ou f(t) = 150 : t = 2,42 min

(Le croquis doit montrer la décroissance, 1’asymptote, les points calculés, et indiquer la décroissance stricte.)

Point de méthode : Pour tracer une exponentielle décroissante, placer les points clés, I'asymptote, et
indiquer les valeurs calculées.
Erreur fréquente : Tracer une courbe qui remonte, ou ne pas indiquer 1’asymptote.

| EXERCICE 2 (10 points)

Résumé de I’énoncé

On étudie un signal électrique u(t) de période \pi, défini par u(t) = t pour t \in [0 ; \pi[. On analyse ses
propriétés, sa fréquence, son développement en série de Fourier, puis ses amplitudes et son spectre.

1. Calcul de quelques valeurs de u

e u(l)=1(car1 €[0; mf)

e u(m) = u(0) = 0 (par périodicité, car m = 0 mod )
e u(m+1)=u(l)=1(m+1=1modn)

e u(4)=u@-nx1)=u(-3,14) =u(0,86) = 0,86

e u(l)=1



e u(m) =0
e u(m+1)=1
e u(4) = 0,86

Point de méthode : Pour une fonction périodique, ramener I’argument dans l'intervalle de définition
par soustraction de multiples de la période.
Erreur fréquente : Oublier la périodicité ou mal calculer le reste.

2. Croquis du signal u(t) sur trois périodes

Sur [0 ; 3\pi], le signal est une rampe qui monte de 0 a 1, puis recommence a 0, etc. (Le croquis doit montrer
trois « dents de scie » identiques, de 0 a o, puis 0 a 1, etc.)

Point de méthode : Représenter la fonction sur chaque période, puis recopier le motif.
Erreur fréquente : Oublier la discontinuité a chaque multiple de .

3. Le signal est-il alternatif ?

Un signal est alternatif si sa valeur moyenne sur une période est nulle :

e Moyenne sur [0 ; \pi] : \frac{1}{\pi} \int_0~{\pi} t dt = \frac{1}{\pi} \left[ \frac{t™2}2} \right]_0"{\pi}
= \frac{1}{\pi} \cdot \frac{\pi™2}{2} = \frac{\pi}{2} \neq O

Donc, le signal n’est pas alternatif.

Le signal u(t) n’est pas alternatif.

Point de méthode : Calculer la valeur moyenne par intégration sur une période.
Erreur fréquente : Croire que toute fonction périodique est alternative.

4. Fréquence et pulsation du signal

e Période T = \pi
e Fréquencef=1/T=1/\pi(en Hz)
e Pulsation \omega = 2\pi / T = 2\pi / \pi = 2 (en rad/s)

f=1/\pi Hz ; \omega = 2 rad/s

Point de méthode : Utiliser les formules f = 1/T et \omega = 2\pi / T.

Erreur fréquente : Inverser les formules ou oublier les unités.

5. Calcul des coefficients de Fourier b_n

On admet que \int_ 0" {\pi} t \sin(2 n t) dt = -\pi / (2n) pour n \geq 1.
Formule du coefficient : b_n = \frac{2}{T} \int_0"T f(t) \sin(n\omega t) dt

e Ici, T = \pi, \omega = 2, donc n\omega = 2n



e b n = \frac{2}{\pi} \int_0~{\pi} t \sin(2n t) dt = \frac{2}{\pi} \left( -\frac{\pi}{2n} \right ) = -\frac{1}
{n}

Pour tout n \geq 1 : b_n = -\frac{1}{n}

Point de méthode : Bien appliquer la formule du coefficient de Fourier, attention aux facteurs.
Erreur fréquente : Oublier de multiplier par 2 / T ou mal utiliser I'intégrale donnée.

6. Calcul des amplitudes A_n et remplissage du tableau

e Onaa n=0pourn\geql
e A 0 =la_0| (calculé plus haut:a 0 = \pi/ 2)
e Pourn\geql:An=bn/=1/n

n 0 1 2 3 4
Valeur exacte de A n \pi/2 1 1/2 1/3 1/4

Valeur approchée a 10™{-2} prés 1,57 1,00 0,50 0,33 0,25

Point de méthode : Les amplitudes sont les valeurs absolues des coefficients.
Erreur fréquente : Oublier de prendre la valeur absolue ou mal arrondir.

7. Analyse des spectres

7.a. Pourquoi le Spectre 2 ne peut pas étre celui de u(t) ?
Le spectre 2 présente des amplitudes nulles pour certains n (par exemple, pour n = 2). Or, pour u(t), tous les
A_n pour n \geq 1 sont non nuls.

Le Spectre 2 ne peut pas étre celui de u(t) car il comporte des amplitudes nulles pour certains n, ce qui
n’est pas le cas ici.

7.b. Pourquoi le Spectre 3 ne peut pas étre celui de u(t) ?
Le spectre 3 montre des amplitudes A_n qui augmentent avec n, alors que pour u(t), elles décroissent comme
1/n.

Le Spectre 3 ne peut pas étre celui de u(t) car les amplitudes A_n augmentent avec n, au lieu de
décroitre.

Point de méthode : Pour reconnaitre un spectre, observer la décroissance ou la nullité des amplitudes.
Erreur fréquente : Confondre la décroissance avec la croissance, ou ne pas regarder tous les n.

I Formulaire récapitulatif

e vV'+ay=0-y@l) =ke~{-at}
¢ Equation différentielle linéaire du premier ordre : solution générale = solution homogéne + solution
particuliere

e Valeur moyenne sur une période T : \frac{1}{T} \int_0~T £f(t) dt



Fréquence: f=1/T

Pulsation : \omega =2\pi /T

Développement en série de Fourier :
o a_ 0 = \frac{1}{T} \int 0O"T f(t) dt
o a_n = \frac{2H{T} \int_0"T f(t) \cos(n\omega t) dt
o b n = \frac{2}{T} \int_0"T f(t) \sin(n\omega t) dt
o A n=\sqrtfa n™2 + b n"2}

Limite d’'une exponentielle décroissante : \lim_{t \to +\infty} ke~{-at} =0

I Conseils généraux pour réussir I’épreuve de mathématiques en BTS

1. Lisez attentivement chaque question : repérez les données, les unités et les objectifs de chaque
partie avant de commencer a rédiger.

2. Justifiez chaque étape : expliquez vos calculs, citez les formules ou théoremes utilisés, méme pour
des étapes simples.

3. Soignez les conversions d’unités : vérifiez toujours si les temps sont en secondes ou en minutes, et
adaptez vos calculs en conséquence.

4. Encadrez les résultats finaux : cela facilite la correction et montre que vous savez présenter une
réponse claire.

5. Relisez-vous et vérifiez vos calculs : une erreur d’étourderie peut cofliter de nombreux points,
surtout sur les calculs d’exponentielles ou de logarithmes.
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